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Abstract—Semantic segmentation, which aims to acquire pixel-
level understanding about images, is among the key components
in computer vision. To train a good segmentation model for
real-world images, it usually requires a huge amount of time
and labor effort to obtain sufficient pixel-level annotations of
real-world images beforehand. To get rid of such a nontrivial
burden, one can use simulators to automatically generate syn-
thetic images that inherently contain full pixel-level annotations
and use them to train a segmentation model for the real-world
images. However, training with synthetic images usually cannot
lead to good performance due to the domain difference between
the synthetic images (i.e., source domain) and the real-world
images (i.e., target domain). To deal with this issue, a number of
unsupervised domain adaptation (UDA) approaches have been
proposed, where no labeled real-world images are available.
Different from those methods, in this work, we conduct a pioneer
attempt by using easy-to-collect image-level annotations for target
images to improve the performance of cross-domain segmenta-
tion. Specifically, we leverage those image-level annotations to
construct curriculums for the domain adaptation problem. The
curriculums describe multi-level properties of the target domain,
including label distributions over full images, local regions
and single pixels. Since image annotations are “weak” labels
compared to pixel annotations for segmentation, we coin this
new problem as weakly-supervised cross-domain segmentation.
Comprehensive experiments on the GTA5 → Cityscapes and
SYNTHIA → Cityscapes settings demonstrate the effectiveness
of our method over the existing state-of-the-art baselines.

Index Terms—Semantic segmentation, domain adaptation,
weakly-supervised learning.

I. INTRODUCTION

Semantic segmentation, which aims to acquire detailed
understanding about images, is an essential problem in com-
puter vision. Different from image recognition, it requires to
predict the meaning of each pixel, leading to significantly
harder challenges. In this paper, we mainly focus on semantic
segmentation in road scenes.

Although deep neural networks have gained great advances
in semantic segmentation over the past years [1], such per-
formance leaps are partly at the time and economic cost of

Copyright c© 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

F. Lv is with Center of Statistical Research and School of Statistics,
Southwestern University of Finance and Economics, Sichuan 610074, China.
E-mail: (fengmaolv@126.com).

G. Lin and S. J. Pan are with School of Computer Science and En-
gineering, Nanyang Technological University, 639798, Singapore. E-mail:
(gslin@ntu.edu.sg, sinnopan@ntu.edu.sg).

P. Liu, G. Yang and L, Duan are with School of Computer Science and En-
gineering, University of Electronic Science and Technology of China, Sichuan
611731, China. E-mail: (liupeng@std.uestc.edu.cn, guowu@uestc.edu.cn, lx-
duan@gmail.com).

huge amounts of human annotations for images, especially
for road scene segmentation, which requires to annotate the
image pixels of diverse categories in a single image. Such
heavy burdens usually become the main bottleneck for training
a good segmentation model.

In order to avoid such pixel-level annotation burdens in
semantic segmentation, very recently researchers have looked
into using weak labels, such as image labels [2], bounding
boxes [3], points [4] or scribbles [5]. Compared to pixel-level
labels, these weak labels are much easier to be collected.
However, prior weakly-supervised learning approaches only
work on segmenting salient foregrounds from simple scenes.
For real-world road scenes featured by complicated environ-
ments, diverse categories and occlusion, how to effectively
leverage the image-level labels for semantic segmentation
remains unclear.

Besides weakly-supervised learning, training deep mod-
els with synthetic images, which are obtained from game
simulators (e.g., Grand Theft Auto V) [6], [7], is becom-
ing an alternative to ease the labelling efforts in semantic
segmentation. Specifically, these synthetic images simulate
real road scenes in cities and their pixel-level annotations
can be automatically generated. But due to the noticeable
difference in visual effect between the synthetic and real-world
images (e.g., coloring, lighting, appearance, etc.), there exists
a domain gap which may cause a significant performance drop
for real-world image segmentation. To reduce the domain gap,
the aforementioned works proposed various domain adaptation
algorithms to better adapt from synthetic images to real-world
ones, including domain adversarial methods [8], [9], [10]
and curriculum learning methods [11], [12]. Existing domain
adversarial methods mainly focus on aligning the features
of pixels and ignore the structural layout of images [8],
[9], [10]. Although the recently proposed curriculum learning
methods [11], [12] take layout information into consideration,
the constructed curriculum may be incorrect since supervision
from the target domain is entirely not provided. The incorrect
curriculums can cause negative transfer, and hence degrade the
performance of target domain.

Considering the limitations of the previous unsupervised
domain adaptation approaches, in this work, we conduct a pio-
neer attempt of introducing image-level labels in cross-domain
segmentation. Although it is very costly to acquire pixel-
level annotations, obtaining image-level labels is much easier.
Therefore, we assume that image-level labels are available
for real-world images in the target domain (see Fig. 1). And
we coin this new setting as weakly-supervised cross-domain
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segmentation or weakly-supervised domain adaptation for
segmentation. This assumption is reasonable as it is easier to
collect image-level annotations than instance-level annotations
from existing datasets or an image search engine. Specifically,
for a single image of the Cityscapes dataset, the pixel-level
annotation takes more than 1.5 hour, while the image-level
annotation can be finished within one minute. To the best of
our knowledge, our work is a very pioneer one to tackle this
setting for semantic segmentation in road scenes.

To tackle this problem, we propose a novel method
dubbed Weakly-supervised Multi-level Curriculum Adaptation
(WsMCA). To be specific, the curriculums refer to multi-level
properties about target domain, including label distributions
over full images, local regions and pixels [11]. The label
distributions over pixels can be considered as the finest-grained
curriculum. These curriculums constitute the ingredients for
adapting the segmentation network to the target domain. Sim-
ilar to [12], WsMCA constructs the curriculums by exploring
the segmentation network itself at each iteration and then uses
them to update its parameters. However, unlike the current cur-
riculum adaptation methods [11], [12], WsMCA constructs the
fine-grained curriculum on the basis of the coarse-grained one,
and hence produces more reliable curriculums. Fig. 2 displays
the overall architecture of WsMCA. In order to fully leverage
the weak supervision from target domain, WsMCA constitutes
multiple curriculums for adapting the label distributions of
target images at different levels: 1) overview of full images;
2) local regions of foregrounds or backgrounds; 3) possible
pixels for each category. These multi-level curriculums can
reveal complementary properties of target images, and hence
lead to better guidance for domain adaptation. Extensive ex-
periments clearly demonstrate the effectiveness of our method
for leveraging weak supervision in cross-domain segmentation.
We believe that this work itself can be a strong baseline for
cross-domain weakly supervised semantic segmentation.

The main contributions of this work are as follows:

• We conduct a pioneer attempt of introducing image-level
labels, which are much easier to be collected than the
pixel-level labels, to improve the performance of cross-
domain segmentation.

• We propose the Weakly-supervised Multi-level Curricu-
lum Adaptation method to construct diverse reliable cur-
riculums for advanced domain adaptation.

• Extensive experiments are conducted to demonstrate the
effectiveness of our method for leveraging weak supervi-
sion in cross-domain segmentation.

This paper is organized as follows. Section II reviews the
related literatures. Section III introduces the problem statement
and the motivation. Section IV presents the proposed method
for weakly-supervised cross-domain segmentation. Section V
displays the experimental results on several standard bench-
marks. Finally, Section VI summarizes this paper.

II. RELATED WORK

A. Semantic Segmentation
Semantic segmentation in images is a very important re-

search topic in computer vision. With the recent advances

Pixel-level label

Image-level labelTarget image

Source image

Fig. 1: Illustration of the weakly-supervised cross-domain
segmentation problem. Source images (i.e., synthetic images)
have full pixel-level annotations, while only image-level class
labels are available for target images (i.e., real-world images).

of Fully Convolutional Networks (FCN) [13], various clever
techniques, raining from to multi-scale aggregation [14], [15],
[16] to context relation [17], [18], were proposed to design ad-
vanced segmentation networks. Besides, post processing tech-
niques like conditional random fields [19] were also exploited
to improve the performance of semantic segmentation neural
networks. However, training segmentation networks requires
a huge amount of time and labor effort to acquire sufficient
pixel-level annotations of real-world images beforehand.

B. Weakly-supervised Semantic Segmentation

Weakly-supervised segmentation aims to alleviate the work-
load of pixel-wise labels for the training data through lever-
aging weak labels, such as image labels that would be far
cheaper to be collected. Weakly-supervised segmentation with
image-level labels was originally tackled through Multiple
Instance Learning (MIL) [20] or Expectation-Maximization
(EM) mechanism [21]. The recent works primarily focused
on guiding top-down segmentation cues in fully convolutional
networks with image-level labels [2], [22], [23], [24]. These
cues visually reflect class-specific cues on both localization
and objection size. Besides image-level labels, other weak
supervision, such as bounding boxes [3], points [4] or scribbles
[5], were also exploited to implement weakly-supervised se-
mantic segmentation. However, the current weakly-supervised
learning methods were mainly designed for relatively simple
tasks segmenting the salient foreground objects in each single
image [2], [20], [25]. To the best of our knowledge, no
works have effectively leveraged the image-level labels in road
scene segmentation featured by complicated environments and
diverse categories of both foregrounds and backgrounds.

C. Domain Adaptation for Semantic Segmentation

Most of the previous works on visual domain adaptation
focused on the classification task. Basically, the main idea is
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Fig. 2: The overall architecture of our proposed WsMCA (best viewed in color). WsMCA constructs curriculums over full
images, local regions and pixels to adapt the semantic segmentation networks into the target domain. The fine-grained curriculum
is generated on the basis of the coarse-grained one. The green lines depict the flow paths of constructing curriculums.

to bridge the source and the target domains by distribution
alignment or pseudo labels [26], [27], [28], [29], [30]. Similar
to image classification, one of the primary approaches to cross-
domain semantic segmentation is to align the distributions
through enforcing domain adversarial training over the inter-
mediate representations [8], [9], [10], [31], [32], [33], [34],
[35] or the structured output space [36], [43] of semantic
segmentation neural networks. In [38] and [39], Generative
Adversarial Networks (GANs) were adopted to directly trans-
late the source images into target-style images, which were
then used to train segmentation networks for target domain.
Recently, curriculum learning methods were also designed to
adapt segmentation networks through constructing curriculums
that reveal the labelling distributions of target images [11],
[12], [40]. However, the constructed curriculums may be
incorrect since supervision from the target domain is entirely
not provided.

Besides strategies over the methodology aspect, internal
data are also leveraged to improve the performance of cross-
domain semantic segmentation. Lin et al. proposed to reduce
domain variations in multi-person part segmentation by using
pose labels from the target domain [41]. Lee et al. and Vu et
al. proposed to use the dense depth from the source domain
as privileged information [42], [43]. Wang et al. proposed to
use the bounding box annotations from the target domain to
improve the performance [44]. However, since the semantic
segmentation task for real road scenes is featured by several
thorns (e.g., diverse categories, occlusion of backgrounds, mul-
tiple objects with different scales), collecting weak supervision
of bounding boxes from target domain is costly.

III. PROBLEM STATEMENT & MOTIVATION

Formally, in the setting of this work, we are given source
images Is ∈ RH×W×3 with pixel labels Ys ∈ {0, 1}H×W×C
and target images It ∈ RH×W×3 with image-level labels
yt ∈ {0, 1}C . To be specific, H and W respectively denote
the height and width of images, while C denotes the category
number. Denote by S and T the source domain and the

target domain, respectively. Our goal is to learn a good
segmentation network that can achieve desirable pixel-level
prediction performance over the target domain.

Our work is mainly motivated by the limitations of the cur-
rent curriculum methods for cross-domain segmentation [11],
[12]. Their main idea is to use additional models or the seg-
mentation network itself to construct curriculums for domain
adaptation. However, as supervision from the target domain is
entirely not provided, the constructed curriculums are at high
risk of being inconsistent with the ground truth. The incorrect
curriculums will guide segmentation networks to learn noisy
information, and hence lead to negative transfer. Therefore,
this work proposes a multi-level curriculum adaptation ap-
proach to construct more reliable curriculums for cross-domain
semantic segmentation. To this end, we introduce image-
level labels from real road scenes as the coarsest-grained
curriculum. The finer-grained curriculum is then generated on
the basis of the coarse-grained one. As displayed in Fig. 2,
the curriculums include structural layout of full images, local
regions of foregrounds (or backgrounds) and possible pixels
for each class. The curriculum over each level plays a unique
role for revealing the properties of target domain. Specifically,
the curriculum over full images maintains the overview of
target images, and the curriculum over local regions reveals
specific locations for each category. The pixel-level curriculum
further provides more precise supervision, which is a necessity
for pixel-level prediction. These complementary curriculums
can jointly give better guidance for domain adaptation.

IV. WEAKLY-SUPERVISED MULTI-LEVEL CURRICULUM
ADAPTATION

In this section, WsMCA is presented for weakly-supervised
domain adaptation for segmentation. To fully leverage the
weak supervision from target domain, we propose to construct
multi-level curriculums for revealing the target properties
and using the properties for adapting segmentation network
towards target domain.
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Preliminary: curriculum domain adaptation. Constructing
curriculums for target domain is an alternative towards domain
adaptation for semantic segmentation. Curriculum means to
obtain easily available knowledge about the target domain first
and then use it to regularize the network predictions [11].
The knowledge is about the desired properties that should be
met by the outputs of semantic segmentation neural networks.
Compared to pseudo labels [12], such the properties can
lie different aspects. Curriculum methods achieve domain
adaptation through first inferring desired properties about the
label distribution of target images, P (It), and then enforcing
segmentation network’s softmax prediction on target images,
S(It) ∈ RH×W×C , to meet these properties [11]:

min
∑
s∈S
Lseg(S(Is),Ys) +

∑
t∈T
C(S(It), P (It)), (1)

where Lseg denotes the pixel-wise cross-entropy loss and
C denotes the curriculum loss for meeting properties P (It).
The target properties can be constructed by either additional
models [11] or the segmentation networks itself [12].

Overview. In this work, curriculums are designed over three
aspects, including full image, local region and single pixel,
which are discussed in the following. Specifically, the cur-
riculum over images refers to properties in the form of image-
level labels, i.e., which classes are included in a target image,
and the curriculum over local regions refers to properties in
the form of label positions, i.e., where each class may exist
in a target image. Pseudo labels can be considered as the
finest-grained property about the target domain. Hence, the
curriculum loss in Eq. (1) inculdes three terms:

C = λimgCimg + λregCreg + λpixCpix,

where λadv , λimg , λreg and λpix are the trade-off parameters
that weigh the importance of the corresponding terms. In order
to tackle the setting of weak-supervised domain adaptation,
our method proposes to constitute multi-level curriculums for
adapting the label distributions of target images over different
views. Specifically, the curriculums include overview of full
images, local regions of foregrounds (or backgrounds) and
possible pixels for each category. For updating the parameters
of S, we will resort to the segmentation network itself for
generating the curriculums at each iteration, and then use the
current curriculums to obtain the gradients for update.

Moreover, we also incorporate the common-used domain-
adversarial loss [36] in our objective. To this end, a discrimi-
native network D is introduced to perform adversarial training
over the output space of the segmentation network S to reduce
the distribution shift. Denote by Ladv the domain-adversarial
term and λadv the corresponding trade-off parameter. The
overall objective is formulated as follows:

max
D

min
S
Lseg + C + λadvLadv.

We refer the readers to [36] for more details about the Ladv
loss. The curriculum loss terms are formulated as follows.

Full images. The curriculums designed over full images are
for revealing the global label distribution of target images. To

this end, we directly employ the image-level label from target
domain, yt, to form curriculum over full images:

Pimg(It) = {yt}.

To be specific, image-level labels from target domain tell us
which objects or backgrounds should exist in a target image.

To enforce the output of semantic segmentation neural
networks to meet the property of Pimg(It), a natural idea is to
perform Multiple Instance Learning over target images. How-
ever, for each category, MIL only encourages one single pixel
to have high activation value, which is relatively weak for road
scenes featured by complicated environments. For expanding
the object areas of each category, we design an attentive
learning module. This module consists of a dropout layer,
an attentive pooling layer and a multi-label classification loss
layer. Firstly, we incorporate a dropout layer before producing
class activation maps, which helps to explore more category
relevant regions instead of only focusing on the most relevant
position. Then, following [45], we conduct attentive pooling
over the activation maps, denoted by A ∈ RH×W×C , which
are the network layer outputs right before the segmentation
softmax layer. This attentive pooling can be written as:

s(c) = log

 1

HW

∑
h,w

exp(r · A(h,w,c))

 . (2)

The pooling output value is denoted by s(c). In the above equa-
tion, the exponential operation suppresses pixels with small
activation values, while retains pixels with large activation
values. In principle, the attentive pooling in Eq. 2 acts as a
soft version of the max pooling layer in MIL, and it results in
the effects that the image regions containing particular objects
will have high activation values on the activation map – the
target object regions will be highlighted on the activation map.
The hyper-parameter r in Eq. 2 acts as a smooth parameter
that controls how smoothly the activation value contributes
to the pooling output value s(c). Specifically, the attentive
pooling with a large value of r tends to select the regions
with large activation values to generate the output, while the
one with a small value of r tends to equally consider every
spatial position in the activation map to generate the output. In
our work, we simply fix the smooth parameter r to 1, which
is sufficient to achieve good object localization performance.
With the pooling output value s(c), we then perform image-
level multi-label classification:

Cimg(yt) =
∑
c

[
(yt,c − 1) log

e−s
(c)

1 + e−s(c)
− yt,c log

1

1 + e−s(c)

]
.

The module can drive the segmentation network to highlight
target object regions – the image regions containing the objects
corresponding to yt. Hereinafter, Cimg(yt) is denoted as Cimg .

Local regions. The curriculums designed over local regions
are for revealing specific locations for each category. As
the same as curriculums designed over full images, the cur-
riculums over local regions are also constructed under the
guidance of the weak supervision yt from target domain. To
this end, we generate category-specific patches to form the
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Fig. 3: The process to generate curriculums over local regions and image pixels. The green lines depict the flow paths of
constructing curriculums. For each category that exists in a target image, we first locate the pixel position that has the largest
value in the corresponding class activation map and then generate a fixed-size patch centered at that position as the curriculums
over local regions. The pixel-level curriculums are generated based on the curriculums over local regions. Within the region
patch Ĩc, we assign pseudo labels to pixels that have high confidence in being class c. Compared to [12], our approach only
assigns pseudo labels to pixels that sit inside the target object regions.
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        Attentive pooling

Fig. 4: Attentive learning module over local regions. The cross
denotes the pixel that maximally activates the c-th category:
argmaxh,w A(h,w,c). We generate a fixed-size patch around
that pixel. Over the generated patch activation map, softmax
classification is performed.

curriculums. Similar to [12], these curriculums are constructed
through resorting to the segmentation network itself. To be
specific, for a category that appears in the target image, we
identify the pixel position which maximally activates that
category, and then generate a fixed-size patch centered at that
position for this particular category. This process is illustrated
in Fig. 3. Remarkably, we also include the dropout layer before
generating the patch activation map to encourage the algorithm
to generate curriculums over more diverse regions rather than
always selecting a particular position. Denoting these local
regions by Ĩc, where c ∈ yt, we can represent the curriculums
over local regions as follows:

Preg(It) = {Ĩc | c ∈ yt}.

These generated local regions are assumed to contain the
object, or at least the discriminative part, of the corresponding
category.

To enforce the output of semantic segmentation neural
networks to meet the property of Preg(It), we implement
similar attentive learning operation over local regions as that

for full images. To be specific, the selected patches go through
the segmentation network to obtain the Patch Class Activation
Map (PCAM) Ãc ∈ RH0×W0×C . Similar to attentive learning
module over full images, we apply attentive pooling operation
in Eq. (2) on the patch activation map Ãc to generate the pool-

ing outputs s̃c ∈
[
s̃
(1)
c , s̃

(2)
c , ..., s̃

(C)
c

]T
. The softmax output of

the patch activation map Ãc is denoted by P̃c ∈ RH0×W0×C .
Finally, we apply the following local patch classification loss
function:

Creg = −
∑
c∈yt

log
es̃

(c)
c∑C

i=1 e
s̃
(i)
c

. (3)

This is about the softmax classification with the patch ac-
tivation map as the input. It is similar to the image-level
classification loss for full images. The process is illustrated
in Fig. 4. For categories that exist in a target image, Creg can
drive the segmentation network to highlight the corresponding
object areas or the discriminative parts in selected local
regions, and hence make the segmentation network to observe
the property of Preg(It).

Single pixels. The curriculums designed over pixels are for
providing more precise supervision, which is essential for the
pixel-level prediction task. The pixel-level curriculum is also
constructed by resorting to the segmentation network itself.
However, unlike Zou et al. [12], for a category c that exists
in target images, we only select pixels in the corresponding
local regions Ĩc. To be specific, within each local region Ĩc,
we select the pixel positions whose softmax score values for
the particular class surpass the threshold γ. We argue that
these selected pixel positions are very likely to sit inside the
target object regions. Formally, the curriculum over pixels is
represented as follows:

Ppix(It) = {Ỹ
(h,w,c)

t = 1|c : c ∈ yt; h, w : P̃
(h,w,c)

c > γ}.

The process is illustrated in Fig. 3. As the local regions are
very confident areas for the particular category, our design,
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compared with [12], reduces incorrect pixel-level curriculums
and produces more reliable pixel-level curriculums.

To adapt segmentation network to reach property of
Ppix(It), we can directly select these high-confident positions
to perform softmax classification. To be specific, we apply a
softmax classification loss for these selected pixel positions
with their activation map values as input:

Cpix = −
∑
c∈yt

∑
h,w: P̃(h,w,c)

c >γ

Ỹ
(h,w,c)

t · log P̃
(h,w,c)

c . (4)

The symbol γ denotes a predefined threshold parameter. This
pixel-level curriculum provides more precise supervision for
adapting segmentation network into the target domain.

V. EXPERIMENTS

A. Datasets

In our experiments, we conduct thorough evaluations of
our proposal on adapting synthetic images to real-world
street views, including both GTA5 → Cityscapes and
SYNTHIA→ Cityscapes.
GTA5 → Cityscapes: The GTA5 dataset includes 24,966
synthetic images with resolution of 1914× 1052 [50]. Specif-
ically, these synthetic images, simulating the virtual urban
views of Los Angeles, are rendered from the game engine of
Grand Theft Auto V (GTA5). With computer graphics tech-
niques, the pixel-wise annotations of the GTA5 images can be
automatically produced. The Cityscapes dataset is mainly
tailored for automatic driving in urban roadways. The images
in Cityscapes are real photos featured by scene variability
and complexity. In particular, Cityscapes consists of 2,975
training images and 500 validation images. These images
have a resolution of 2048 × 1024. In the experiments, 19
common categories among GTA5 and Cityscapes are of
interest. We train our model using all the pixel-level annotated
GTA5 images and the image-level annotated images from the
training set of Cityscapes. Following the existing state-of-
the-art works [36], [12], [33], we evaluate our method over
the validation set with 500 images.
SYNTHIA → Cityscapes: In this setting, we adopt
the SYNTHIA-RAND-CITYSCAPES set as the source do-
main [7]. In particular, “SYNTHIA” includes 9,400 photo-
realistic images rendered from virtual scenes, with the size of
960 × 720. Similar to GTA5 images, their pixel-wise labels
are generated automatically. Following [36] and [32], we
evaluate our method over 13 common categories. Also, the
full “SYNTHIA” dataset is used for training and the data spilt
for Cityscapes is identical to the above setting.

B. Implementation Details

In the experiments, we implement the segmentation net-
work S by FCN8s with VGG-16 [13] and deeplab-v2 with
ResNet-101 [14]. The network parameters are pre-trained on
ImageNet. Both the topology of the discriminative network D
and the value of λadv follow the identical settings in [36].

In our experiments, the GTA5 images and the
Cityscapes images are resized to 1280 × 640 and

1024 × 512, respectively, while the resolution of the
“SYNTHIA” images are kept unchanged. To validate
the robustness of our method, we adopt the identical
hyper-parameters in both GTA5 → Cityscapes and
SYNTHIA → Cityscapes. Specifically, the parameters of
the backbone network S is optimized by stochastic gradient
descent (SGD) with momentum of 0.9 and weight decay
of 0.0005, while those of the discriminative network D are
optimized by Adam with momentum of 0.9 and 0.99. The
initial learning rates for S and D are respectively set to
0.00025 and 0.0001. The maximum iteration number is 120k
and the batch size is set to 2. The curriculums over local
regions and fine-grained pixels are progressively incorporated
after 8k iterations. The trade-off hyper-parameters λimg
and λreg(λpix) are fixed to 0.2 and 0.0005, respectively.
Additionally, we fix the size of local patch to 200× 200. The
self-training threshold γ in Eq. 4 is set to 0.7. Finally, the
mIoU value is adopted as the metric of evaluation.

C. Baselines

We conduct extensive comparisons with state-of-the-art un-
supervised and weakly-supervised domain adaptation methods,
which are listed as follows.
Unsupervised domain adaptation baselines:
• Source-Only: Semantic segmentation model trained with

only the source data. Moreover, we also report the target-
only results obtained by the model trained with target data
in the supervised setting to serve as the upper bounds of
domain adaptation performance.

• DCAN: Dual Channel-wise Alignment Network
from [47]. It focuses on matching the channel-wise
feature statistics.

• SIBAN: Significance-aware Information Bottlenecked
Adversarial Network from [34]. SIBAN purifies features
with a significance-aware information bottleneck to sta-
bilize the adversarial training course.

• ROAD: Reality Oriented ADaptation in [46]. It proposes
to conduct feature alignment over different regions.

• SSF: Separated Semantic Feature from [35]. SSF aligns
the distribution discrepancy via independent class-wise
adversarial learning.

• CLAN: Class-Level Adversarial Network in [31]. CLAN
adaptively weights the adversarial loss for each feature
according to the category-level alignment degree.

• AdaptSeg: Adaptive Segmentation proposed in [36]. It
implements domain adaptation through aligning the out-
put space of segmentation networks.

• AdvEnt: Adversarial Entropy minimization approach
from [43]. AdvEnt adapts the principle of entropy mini-
mization to cross-domain semantic segmentation.

• DPR: Discriminative Patch Representation from [49]. It
proposes to bridge domain shift via patch-level alignment.

• CYCADA: CYCle-consistent Adversarial Domain Adap-
tation from [39]. CYCADA leverages the recent advances
of GANs to directly translate source images to target-
style images, which are then used to train segmentation
networks for target domain.
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TABLE I: Comparisons on GTA5→ Cityscapes in terms of per-class IoUs and mIoU.
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VGG-16

Source-Only 66.5 23.3 68.2 17.1 12.1 14.5 16.0 4.0 79.6 16.7 64.2 40.3 2.1 70.8 20.5 16.8 2.0 8.9 0.0 28.6
Target-Only 96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 52.6 90.4 60.1 31.7 88.4 54.9 52.3 34.7 33.6 59.1 57.6
SIBAN [34] 83.4 13.0 77.8 20.4 17.5 24.6 22.8 9.6 81.3 29.6 77.3 42.7 10.9 76.0 22.8 17.9 5.7 14.2 2.0 34.2

AdaptSeg [36] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
CyCADA [39] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

ROAD [46] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9
DCAN [47] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2
CBST [12] 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1

AdvEnt [43] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1
ODC [44] 85.3 43.6 78.5 28.3 25.2 10.5 10.5 6.7 81.4 33.6 74.3 36.7 3.0 73.0 20.2 13.4 0.0 4.7 0.0 33.1

WsMCA (ours) 85.2 26.3 78.9 19.1 22.4 19.3 18.1 18.5 80.8 34.4 79.7 47.9 20.4 78.8 29.9 22.6 21.5 18.1 2.1 38.1

ResNet-101

Source-Only 75.2 20.2 77.7 22.6 20.9 25.7 27.8 18.3 80.1 9.8 73.1 56.0 23.0 65.4 27.0 6.8 2.7 21.8 34.3 36.2
Target-Only 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4
SIBAN [34] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

AdaptSeg [36] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
ROAD [46] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4
CLAN [31] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdvEnt [43] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
DISE [48] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
DPR [49] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5
SSF [35] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

WsMCA (ours) 90.3 43.4 82.4 24.1 27.1 32.9 37.8 41.0 83.2 34.1 80.8 62.0 33.7 83.3 47.7 51.3 15.0 33.8 50.3 50.2

• DISE: Domain Invariant Structure Extraction from [48].
It disentangle images into domain-invariant structure and
domain-specific texture representations.

• CDA: Curriculum Domain Adaptation proposed in [11].
It uses additional models to construct curriculums for
adapting segmentation networks into target domain.

• CBST: Class-Balanced Self-Training from [12]. CBST
constructs curriculums for adaptation through resorting
to the segmentation network itself.

Weakly-supervised domain adaptation baselines:
• ODC: Object-level Domain Classifier in [44]. It assumes

that the weak supervision of bounding boxes from target
domain are available for domain adaptation. To lever-
age the weak supervision of bounding boxes, ODC is
designed to learn domain-invariant object features.

Note that collecting weak supervision of bounding boxes
in [44] is still costly since the semantic segmentation task
for real road scenes is featured by several thorns (e.g., diverse
categories, occlusion of backgrounds, multiple objects with
different scales).

D. Comparisons

Tables I and II display the comparisons of our method
and existing cross-domain semantic segmentation baselines.
Compared with the existing UDA baselines for semantic seg-
mentation, it is clear that our proposed multi-level curriculum
adaptation methods can fully utilize weak supervision of
image-level labels from target domain to improve the per-
formance of cross-domain segmentation significantly. Specif-
ically, the feature alignment approaches, including DCAN,

SIBAN, ROAD and SSF, mainly focus on aligning the features
of pixels, but ignore the overall structural layout of images.
Hence, they achieve relatively poor cross-domain performance.
In contrast, the recently proposed structured output adaptation
approaches, such as AdaptSeg, AdvEnt and DPR, mainly
focuses on adapting the spatial layout of images, but ignores
precise adaptation over pixels. The performance of CYCADA
and DISE heavily rely on the quality of image translation,
which is at discount for the road scene images featured by
complicated environments. Both CDA and CBST will suffer
from incorrect curriculums since supervision from the target
domain is entirely not provided. Noticeably, for ODC with
weak supervision of bounding boxes from the target domain
that is more costly than image-level labels, its cross-domain
performance is relatively poor. This is because that learn-
ing domain-invariant object features cannot provide sufficient
support for pixel-level prediction, and hence make the weak-
supervision of bounding boxes not fully utilized. In contrast,
our method constructs multi-level curriculums for revealing
diverse properties of target images, which can be used to adapt
the network towards better prediction for target domain.

Moreover, in order to verify the effectiveness of our ap-
proach in fully utilizing the image-level labels, we replace the
proposed multi-level curriculums with other designs, including
Multi-Instance Learning (MIL) from [20] and Class Activation
Mapping (CAM) from [23]. MIL is the natural approach for
leveraging image-level labels. CAM is a common alternative
for leveraging image-level labels with global average pooling.
From Table III, it is clear that both MIL and CAM only
bring very limited performance improvement for cross-domain
semantic segmentation. To be specific, for each category,
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TABLE II: Comparisons on SYNTHIA→ Cityscapes in terms of per-class IoUs and mIoU.
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VGG-16

Source-Only 8.4 12.0 73.4 4.5 5.2 72.8 73.5 41.3 5.2 68.8 21.9 4.9 5.6 30.6
Target-Only 96.5 74.6 86.1 39.7 51.6 87.3 90.4 60.1 31.7 88.4 52.3 33.6 59.1 65.5
CDA [11] 65.2 26.1 74.9 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 34.8

SIBAN [34] 70.1 25.7 80.9 3.8 7.2 72.3 80.5 43.3 5.0 73.3 16.0 1.7 3.6 37.2
AdaptSeg [36] 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6

ROAD [46] 77.7 30.0 77.5 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 41.8
AdvEnt [43] 67.9 29.4 71.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 36.6

ODC [44] 87.4 43.4 78.0 0.0 2.9 80.1 80.5 38.1 8.1 0.0 26.2 1.4 19.7 35.8
WsMCA (ours) 83.5 25.4 80.7 7.9 16.2 79.2 77.5 48.0 24.0 78.8 24.1 24.7 35.8 46.6

ResNet-101

Source-Only 55.8 21.8 78.7 7.3 12.9 75.7 80.1 53.9 18.4 37.2 21.1 11.4 23.7 38.3
Target-Only 97.9 81.3 90.3 57.9 67.3 91.9 94.2 79.8 59.8 93.7 67.5 57.7 68.8 77.5
SIBAN [34] 82.5 24.0 79.4 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3
CLAN [31] 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8

AdaptSeg [36] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7
AdvEnt [43] 85.6 42.2 79.7 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0
DISE [48] 91.7 53.5 77.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 48.8
DPR [49] 82.4 38.0 78.6 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5
SSF [35] 84.6 41.7 80.8 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 50.0

WsMCA (ours) 85.8 42.6 83.7 25.3 17.1 83.1 85.0 57.1 33.0 77.6 46.1 31.3 32.4 53.9

TABLE III: Comparisons of different designs to utilize the
image-level labels for pixel-level transfer.

Method Base Model
GTA5
↓

Cityscapes

SYNTHIA
↓

Cityscapes

CAM [23] VGG-16 32.5 39.8
MIL [20] VGG-16 36.8 39.2
WsMCA (ours) VGG-16 38.1 46.6
CAM [23] ResNet-101 43.4 48.5
MIL [20] ResNet-101 43.6 47.4
WsMCA (ours) ResNet-101 50.2 53.9

MIL only encourages one single pixel to have high activation
value, which is relatively weak for road scenes featured by
complicated environments. On the contrary, for categories that
appear in a target image, CAM encourages all pixels to have
high activations and overestimates the corresponding region
size. Due to the large scale discrepancy among categories in
road scenes, CAM may even cause negative transfer.

E. Analysis

Ablation study. To further evaluate the contribution of each
design in our method, we display the ablation study results in
Table IV. The first row represents the segmentation network
trained with only the source domain. The second row shows
the results of the domain adversarial training baseline. From
the third row, it is clear that the curriculum over full images
makes a good contribution for adapting segmentation network
into the target domain, especially for the infrequent categories
(e.g., train, motorcycle, truck and rider). The fourth and the
fifth rows progressively incorporate curriculums over local
regions and fine-grained pixels. It is clear that both of them

provide more precise supervision for domain adaptation, espe-
cially for the small-scale categories (e.g., light, sign, bicycle
and pole). Notably, by comparing the second and the last row,
we can see that the image-level supervision from target domain
makes a great contribution for adapting segmentation network
towards better prediction over target data.
Sensitivity analysis. In Table V, we display sensitivity anal-
ysis results. For each design, it is clear that the result is not
sensitive to the values of the corresponding hyper-parameters.
This demonstrates that our method can tolerate a wide range
of hyper-parameters.
Qualitative results. For a qualitative view, we illustrate the
segmentation results in Fig. 5. In general, leveraging the
image-level labels significantly improves the pixel-level pre-
diction of target images, especially for the small-scale fore-
ground objects that are invisible in complicated road scenes.
Furthermore, we visualize the class activation maps of CNNs
in Fig. 6. As we can see, adapted by curriculums designed with
image-level supervision, the segmentation network can pro-
duce activation maps which are able to highlight those object
regions corresponding to the image-level category labels. As
displayed, when curriculums with image-level supervision are
removed, the activation maps cannot clearly reveal the object
areas for particular categories.

VI. CONCLUSION

In this work, we conduct a pioneer attempt to leverage
the easy-to-collect image-level annotations for target images
to improve the performance of cross-domain segmentation.
We coin this new setting as weakly-supervised cross-domain
segmentation. To fully use the weak supervision from image-
level labels, we present a novel method called WsMCA to
construct multi-level curriculums for revealing diverse prop-
erties of target images, as well as adapt the segmentation

Authorized licensed use limited to: Nanyang Technological University. Downloaded on December 10,2020 at 06:12:39 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3040343, IEEE
Transactions on Circuits and Systems for Video Technology

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE IV: The ablation study on GTA5→ Cityscapes over ResNet-101. The first row displays the “Source-Only” results;
the second row displays the results of the domain adversarial training baseline; the third to the fifth rows display the performance
contribution of each design for weakly-supervised domain adaptation.
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X 75.2 20.2 77.7 22.6 20.9 25.7 27.8 18.3 80.1 9.8 73.1 56.0 23.0 65.4 27.0 6.8 2.7 21.8 34.3 36.2

X X 88.0 31.6 79.6 25.5 21.6 25.4 26.0 14.3 82.6 34.1 74.0 55.3 13.9 79.7 29.4 38.3 0.9 26.2 24.9 40.6

X X X 87.9 36.3 82.1 23.3 29.8 28.0 37.6 36.4 82.8 31.0 81.3 61.7 32.4 82.4 49.7 50.5 14.1 34.0 40.9 48.5

X X X X 88.6 38.7 83.0 22.0 30.3 28.8 36.4 36.7 82.5 32.2 80.7 61.8 32.7 82.1 48.0 52.8 14.4 34.2 46.5 49.1

X X X X X 90.3 43.4 82.4 24.1 27.1 32.9 37.8 41.0 83.2 34.1 80.8 62.0 33.7 83.3 47.7 51.3 15.0 33.8 50.3 50.2

TABLE V: Sensitivity analysis on GTA5 → Cityscapes
over ResNet-101. In each row, the corresponding component
is progressively incorporated. The sensitivity analysis is con-
ducted through changing the corresponding hyper-parameters,
while fixing the others to the values used in the experiments.

Cimg
λimg 0.05 0.1 0.2 0.4
mIOU 47.2 48.1 48.5 47.4

Creg + Cpix

λreg(λpix) 0.00025 0.0005 0.001 0.002
mIOU 49.9 50.2 50.0 49.7

γ 0.6 0.7 0.8 0.9
mIOU 49.3 50.2 49.7 49.4

Patch size 50×50 100×100 150×150 200×200
mIOU 49.5 49.8 50.0 50.2

network towards better pixel-level prediction on target images.
Extensive experiments clearly demonstrate that our WsMCA
method can effectively leverage weak supervision from target
images for cross-domain segmentation.
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Fig. 5: Qualitative segmentation results on the GTA5 → Cityscapes setting. (a) target images. (b) ground truth. (c)
“NoAdapt” predictions of segmentation network trained with only the source domain. (d) segmentation results by removing
curriculums constructed with image-level supervision. (e) segmentation results of our full model.

Text

Ground	truth

Fence BusPerson

Target	image

Full	model

NoWeak

Fig. 6: The activation maps of sample target images under different classes. The activation maps from the top row are obtained
by removing curriculums constructed with image-level supervision.

[24] F. Meng, K. Luo, H. Li, Q. Wu, and X. Xu, “Weakly supervised
semantic segmentation by a class-level multiple group cosegmentation
and foreground fusion strategy,” IEEE Transactions on Circuits and
Systems for Video Technology, 2019. [Online]. Available: https://doi:
10.1109/TCSVT.2019.2962073 2

[25] Y. Tang, W. Zou, Z. Jin, Y. Chen, Y. Hua, and X. Li, “Weakly supervised
salient object detection with spatiotemporal cascade neural networks,”
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 7, pp. 1973-1984,
2019. 2

[26] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” arXiv preprint
arXiv:1412.3474, 2014. 3

[27] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” arXiv preprint arXiv:1409.7495, 2014. 3

[28] P. Haeusser, T. Frerix, A. Mordvintsev, and D. Cremers, “Associative
domain adaptation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 2765-2773. 3

[29] L. Zhang, P. Wang, W. Wei, H. Lu, C. Shen, A. van den Hengel, and Y.
Zhang, “Unsupervised domain adaptation using robust classwise match-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 29, no. 5, pp. 1339-1349, 2018. 3
[30] W. Deng, L. Zheng, Y. Sun, and J. Jiao, “Rethinking triplet loss for

domain adaptation,” IEEE Transactions on Circuits and Systems for Video
Technology, 2020. [Online]. Available: https://doi:10.1109/TCSVT.2020.
2968484 3

[31] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain
adaptation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2507-2516. 3, 6, 7, 8

[32] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. F. Wang, and
M. Sun, “No more discrimination: Cross city adaptation of road scene
segmenters,” in Proceedings of the International Conference on Computer
Vision, 2017, pp. 2011-2020. 3, 6

[33] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum clas-
sifier discrepancy for unsupervised domain adaptation,” arXiv preprint
arXiv:1712.02560, vol. 3, 2017. 3, 6

[34] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, “Significance-aware
information bottleneck for domain adaptive semantic segmentation,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 6778-6787. 3, 6, 7, 8

Authorized licensed use limited to: Nanyang Technological University. Downloaded on December 10,2020 at 06:12:39 UTC from IEEE Xplore.  Restrictions apply. 

https://doi:10.1109/TCSVT.2019.2962073
https://doi:10.1109/TCSVT.2019.2962073
https://doi: 10.1109/TCSVT.2020.2968484
https://doi: 10.1109/TCSVT.2020.2968484


1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3040343, IEEE
Transactions on Circuits and Systems for Video Technology

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[35] L. Du, J. Tan, H. Yang, J. Feng, X. Xue, Q. Zheng, X. Ye, and X. Zhang,
“Ssf-dan: Separated semantic feature based domain adaptation network
for semantic segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 982-991. 3, 6, 7, 8

[36] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M.
Chandraker, “Learning to adapt structured output space for semantic
segmentation,” arXiv preprint arXiv:1802.10349, 2018. 3, 4, 6, 7, 8

[37] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, “Advent:
Adversarial entropy minimization for domain adaptation in semantic
segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2517-2526.. 3, 6, 7, 8

[38] Z. Murez, S. Kolouri, D. Kriegman, R. Ramamoorthi, and K. Kim,
“Image to image translation for domain adaptation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 4500-4509. 3

[39] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A.
A. Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial domain
adaptation,” arXiv preprint arXiv:1711.03213, 2017. 3, 6, 7

[40] Q. Lian, F. Lv, L. Duan, and B. Gong, “Constructing self-motivated
pyramid curriculums for cross-domain semantic segmentation: A nonad-
versarial approach,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 6758-6767. 3

[41] K. Lin, L. Wang, K. Luo, Y. Chen, Z. Liu, and M. Sun, “Cross-domain
complementary learning using pose for multi-person part segmentation,”
IEEE Transactions on Circuits and Systems for Video Technology, 2020.
[Online]. Available: https://doi:10.1109/TCSVT.2020.2995122 3

[42] K. Lee, G. Ros, J. Li, and A. Gaidon, “SPIGAN: privileged adversarial
learning from simulation,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/forum?
id=rkxoNnC5FQ 3

[43] T. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “DADA: depth-aware
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